Packing Posets in the Boolean Lattice

نویسندگان

  • Andrew P. Dove
  • Jerrold R. Griggs
چکیده

We are interested in maximizing the number of pairwise unrelated copies of a poset P in the family of all subsets of [n]. For instance, Sperner showed that when P is one element, ( n bn2 c ) is the maximum number of copies of P . Griggs, Stahl, and Trotter have shown that when P is a chain on k elements, 1 2k−1 ( n bn2 c ) is asymptotically the maximum number of copies of P . We prove that for any P the maximum number of unrelated copies of P is asymptotic to a constant times ( n bn2 c ) . Moreover, the constant has the form 1 c(P ) , where c(P ) is the size of the smallest convex closure over all embeddings of P into the Boolean lattice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the factorial functions of Eulerian binomial and Sheffer posets

We completely characterize the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has...

متن کامل

Classification of the factorial functions of Eulerian binomial and Sheffer posets

We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n...

متن کامل

Weak embeddings of posets to the Boolean lattice

The goal of this paper is to prove that several variants of deciding whether a poset can be (weakly) embedded into the Boolean lattice, or to a few consecutive levels of it, areNP-complete.

متن کامل

Comparator Circuits over Finite Bounded Posets

Comparator circuit model was originally introduced in [5] (and further studied in [2]) to capture problems which are not known to be P-complete but still not known to admit efficient parallel algorithms. The class CC is the complexity class of problems many-one logspace reducible to the Comparator Circuit Value Problem and we know that NLOG ⊆ CC ⊆ P. Cook et al [2] showed that CC is also the cl...

متن کامل

Boolean Posets, Posets under Inclusion and Products of Relational Structures1

In this paper X denotes a set. Let L be a lattice. Note that Poset(L) has l.u.b.’s and g.l.b.’s. Let L be an upper-bounded lattice. One can verify that Poset(L) is upper-bounded. Let L be a lower-bounded lattice. One can verify that Poset(L) is lower-bounded. Let L be a complete lattice. Note that Poset(L) is complete. Let X be a set. Then X is an order in X . Let X be a set. The functor 〈X ,⊆〉...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Order

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2015